Поиск в словарях
Искать во всех

Физический энциклопедический словарь - ондулятор

 

Ондулятор

ондулятор
(франц. ondulateur, от onde — волна), устройство, в к-ром создаются периодич. поля, действующие на проходящие через него заряж. ч-цы с периодич. силой, удовлетворяющей условию: среднее за период значение силы равно нулю. Движущаяся заряж. ч-ца, попав в О., совершает периодич. колебательно-поступат. движение, т. е. явл. осциллятором, движущимся равномерно и прямолинейно; такая ч-ца испускает ондуляторное излучение. Наиболее распространённые траектории ч-цы в О.— синусоиды и спирали.

По виду создаваемых полей О. делятся на два типа. В О. 1-го типа поля периодически изменяются в пр-ве или во времени [знакопеременное магн. поле (рис.), винтовое магн. поле, ВЧ электрич. поле, поле эл.-магн. волны и т. д.]. В О. 2-го типа действуют статические фокусирующие магн. и электрич. поля (однородное магн. поле,

Схема ондулятора со знакопеременным магн. полем. Траектория ч-цы е лежит в плоскости, перпендикулярной рисунку. Стрелками указаны направления магн. силовых линий. 0 — длина периода траектории ч-цы а ондуляторе.


скрещённые однородные электрич. и магн. поля, квадрупольное электрич. поле и т. д.). Длина периода траектории ч-цы в О. 1-го типа задаётся периодом поля О., зависит от угла и координаты вхождения ч-цы в О. и в релятивистском случае не зависит от её энергии. В О. 2-го типа длина периода траектории ч-цы определяется фокусирующими св-вами полей (градиентом, величиной), амплитудой колебания ч-цы (задаётся углом и координатой ее вхождения в О.), энергией ч-цы.

Природными О. явл. кристаллы. Внутрикрист. электрич. поле, усреднённое по поверхностям плоскостей, параллельных кристаллографическим, или по длинам прямых, параллельных осям кристалла, явл. фокусирующим для заряж. ч-цы (см. Каналирование

486



частиц). В то же время усреднённое внутрикрист. электрич. поле явл. периодич. ф-цией расстояния, отсчитываемого по прямой, пересекающей кристаллографич. плоскости. Поэтому если угол и координата вхождения ч-цы в кристалл таковы, что она пересекает кристаллографич. плоскости, то кристалл подобен О. 1-го типа. Длина периода траектории ч-цы в этом случае определяется межплоскостным расстоянием и углом между вектором ср. скорости ч-цы и кристаллографич. плоскостями. Если же нач. условия таковы, что ч-цы попадают в режим плоскостного или осевого каналирования, то кристалл подобен О. 2-го типа.

О. находят широкое применение. Они могут служить источниками излучения, использоваться для усиления эл.-магн. волн (см. Лазеры на свободных электронах) и ускорения ч-ц эл.-магн. волной; О. применяются в масс-спектрометрах для разделения изотопов, в системах ввода ионов в магн. ловушки, для сепарации пучка ч-ц, для создания угл. разброса ч-ц пучка, создания сгруппированных пучков. С помощью О. можно осуществлять оптич. индикацию пучков электронных и протонных синхротронов и накопителей и управлять их параметрами.

В источниках индуцированного ондуляторного излучения, ондуляторных линейных ускорителях, устройствах для группировки (банчировки) ч-ц в ускорителях, системах индикации пучков и в др. установках может оказаться целесообразным применение О. с плавно меняющимися параметрами— длиной периода траектории ч-цы, величинами магн. и электрич. полей и т. д. В таком О. можно, напр., добиться увеличения времени резонансного вз-ствия ч-ц с эл.-магн. волной, расширения диапазона частот спектра спонтанного ондуляторного излучения.

• См. лит при ст. Ондуляторное излучение.

Е. Г. Бессонов.

ОНДУЛЯТОРНОЕ ИЗЛУЧЕНИЕ,

электромагнитное излучение, испускаемое ускоренными заряж. ч-цами в ондуляторах; излучение равномерно и прямолинейно движущегося осциллятора. Различные типы источников О. и., состоящих из ускорителя или накопителя ч-ц (чаще эл-нов) и ондулятора, могут испускать спонтанное некогерентное, спонтанное когерентное и индуцированное О. и.

Скорость ч-цы в ондуляторе можно представить в виде суммы скоростей: постоянной vп и периодической переменной v(t+T)=v(t) (T период колебаний ч-цы в ондуляторе, t время). Одиночная ускоренная ч-ца, пройдя через ондулятор, испускает цуг эл.-магн. волн, длительность к-рого t зависит от угла  между vп и направлением наблюдения. На расстояниях R>>K0 (0 — длина периода

траектории ч-цы в ондуляторе, К — число периодов)

t=(K0/cп))1-пcos), (1)

где п=vп/с. Испущенный ч-цей цуг содержит К периодов, и, следовательно, круговая частота осн. гармоники О. и. 1=2K/t. В общем случае цуги волн О. и. на интервале t не явл. гармоническими и излучение происходит на неск. гармониках, кратных основной. Частоты k k-той гармоники определяются в соответствии с Доплера эффектом ф-лой:

k=k/(1-пcos), (2)

где =2япс/0 — частота колебаний ч-цы в ондуляторе. При =0 частоты О. и. максимальны. Вследствие конечной длительности цугов, О. и., испускаемое ч-цей в нек-ром направлении, распределено в интервале частот k., к-рый определяет естеств. ширину линии k:

k/k1/kK. (3)

При K>>1 О. и., наблюдаемое под заданным углом 6, монохроматично и имеет частоту, соответствующую (2). Осн. часть энергии, испускаемой релятив. ч-цей, сосредоточена вблизи направления её мгнов. скорости v в узком диапазоне углов

где ξ энергия ч-цы, m — её масса,  — v/c; наз. релятив. фактором ч-цы.

Вектор v изменяет своё направление относительно vп в нек-ром диапазоне углов Да. Если <<1/, то ч-ца при движении в ондуляторе излучает в основном в направлении, близком к направлению vп, т. е. в диапазоне углов Д6, определяемых (4). С увеличением  растёт ускорение ч-цы v, а следовательно, и полная интенсивность О. и.

При >1/ О. и. испускается в больший диапазон углов: >. В направлении наблюдения (определяемом единичным вектором n) излучение испускается эффективно только в том случае, когда угол между n и v не превышает 1/. При этом число гармоник О. п. резко возрастает, что приводит к уширению его спектра и сдвигу в более коротковолновую (жёсткую) область. При >>1/ спектр О. и. становится близким к спектру синхротронного излучения. Величина спектр. плотности потока энергии О. и., испускаемого ч-цей в направлении vп, достигает макс. значения при 1/ (условие оптим. генерации).

Хар-ки О. и. пучка ч-ц зависят от угл. и энергетич. разброса ч-ц, размеров и формы пучка, а также от вида О. и. Фазы эл.-магн. волн. испускаемых разл. ч-цами пучка, для спонтанного некогерентного О. и. явл. случайными ф-циями времени, для спонтанного когерентного они скоррелированы между собой, а для индуцированного О. и.— скоррелированы между собой, а также и с фазой усиливаемой волны. Степенью фазовых корреляций (синфазностью) О. и. отд. ч-ц пучка в значит. степени определяются интенсивность, направленность, монохроматичность и степень поляризации О. и.

В источниках спонтанного некогерентного О. и. ч-цы пучка излучают независимо друг от друга. Интенсивность излучения такого пучка пропорц. его току г. В условиях оптим. генерации поток dnф/dt эквивалентных фотонов О. и. (поток полной, т. е. усреднённой по углам, энергии фотонов, делённый на макс. энергию одного фотона), испускаемых эл-нами в ондуляторах с поперечными гармонич. полями, равен

dnф/dtKi/e, (5)

где =е2/ћс1/137, е — заряд эл-на. В этих условиях при K=102 один эл-н, пройдя через ондулятор, испускает один фотон; пучок эл-нов с i=0,1 А создаёт поток dnф/dt=4•1017 фотонов в с. Для 0=3 см макс. энергия фотонов при этом составляет ок. 300 эВ, если ξ=1 ГэВ, и ок. 30 кэВ при ξ=10 ГэВ.

Источники О. и. с такими параметрами целесообразно создавать на основе синхротронов и накопителей эл-нов, в прямолинейных промежутках к-рых устанавливаются ондуляторы. В этом случае достигается высокая эффективность источников за счёт многократного прохождения ч-ц через ондулятор: эл-ны, потеряв энергию на излучение, восстанавливают её при движении в ускоряющей системе синхротрона (накопителя) и затем вновь попадают в ондулятор — происходит т. н. рекуперация энергии. Спонтанное О. и. может применяться в тех же областях исследований, что и синхротронное излучение: в рентг. микроскопии, рентг. структурном анализе, ат. и мол. спектроскопии, спектроскопии кристаллов, рентг. литографии, медицине и др. По сравнению с синхротронным излучением оно обладает более высокими интенсивностью, направленностью, степенью монохроматичности и поляризации.

В рассмотренных источниках длина периода траектории ч-цы в ондуляторе 01 см, т. к. она должна быть больше его апертуры, определяемой поперечными размерами пучка (1 мм). Более жёсткое излучение (энергия квантов ћ11максξ) при меньшей эффективности генерации можно получить, используя ондуляторы, в к-рых 0<<1 см. Ими могут служить эл.-магн. волны и кристаллы. Через кристалл ч-цы проходят однократно, поэтому кристаллы устанавливаются на краю рабочей области синхротро-

487



нов, на выходе линейных ускорителей эл-нов, а также в электронных каналах протонных синхротронов. Поляризованные фотонные пучки, испускаемые эл-нами в поле поляризованной волны или в кристалле (когерентное тормозное излучение, каналированное излучение), используются в яд. физике и физике высоких энергий.

В источниках спонтанного когерентного О. и. используют пучок ч-ц, предварительно сгруппированный (сбанчированный) в сгустки длиной =2с/, находящиеся друг от друга на расстоянии, равном или кратном . В таком пучке излучения отд. ч-ц скоррелированы по фазе. Совр. техника группирования пучков позволяет осуществлять генерацию когерентного О. и. с 1 нм.

В источниках индуцированного О. и. используют как сбанчированные, так и однородные по плотности пучки ч-ц. В ондулятор подаётся внеш. эл.-магн. волна, напр. свет. Если сгустки пучка ч-ц, сгруппированного на входе в ондулятор, попадают в тормозящие фазы электрич. поля Е эл.-магн. волны (поперечная составляющая скорости ч-цы, определяемая в основном полем ондулятора, направлена под острым углом к Е), то они отдают свою кинетич. энергию эл.-магн. волне, усиливая её (обратный Комптона эффект). Энергия усиленной волны представляет собой сумму энергий внеш. излучения, спонтанного когерентного О. и. и индуцированного О. и. Энергия последнего не равна нулю только в той области, где существует усиливаемая волна. Это означает, что индуцированное О. и. испускается в направлении распространения внеш. волны. Если поле излучения сгустков ч-ц |Eч|<<|E|, то все др. хар-ки индуцированного О. и. совпадают с хар-ками усиливаемой волны.

Ч-цы однородного пучка попадают " как в тормозящие, так и в ускоряющие фазы. Т. к. энергия ч-ц, находящихся в ондуляторе в разл. фазах волны, изменяется по-разному, то они начинают двигаться с разл. продольными скоростями и группируются в сгустки. Если нач. энергия ч-ц пучка выше нек-рой равновесной энергии, то ч-цы группируются в тормозящих фазах волны и, следовательно, усиливают её.

Источники О. и. всех видов обладают общей важной хар-кой — возможностью плавной регулировки частоты. В малом диапазоне частот (~10%) это достигается изменением п.

Идея генерации спонтанного О. и. была впервые высказана и обоснована В. Л. Гинзбургом в 1947. Теоретически было показано, что О. и. должно обладать рядом преимуществ перед синхротронным излучением: монохроматичностью в заданном направлении, более высокой спектр. плотностью потока энергии излучения. Предложена

схема рекуперации энергии. Дальнейшее развитие теория спонтанного О. и. получила в работах Г. Моца (1951—53, США), им были построены первые источники спонтанного некогерентного и спонтанного когерентного О. и., исследованы св-ва О. и. этих источников, визуально наблюдалась цветная радужная картина О. и. в оптич. диапазоне, согласующаяся с теоретически полученной зависимостью частоты от в. В 1958—59 Р. Твиссом (Австралия), Моцем, Р. Пантелом, Дж. Шнайдером (США) и А. В. Гапоновым-Греховым высказана и обоснована идея источников индуцированного О. и. Первые источники индуцированного О. и. были созданы и исследованы на длине волны 10 см (1960, амер. физик Р. М. Фпллипс).

• Бессонов Е. Г., Вопросы теории и экспериментального исследования ондуляторного излучения, в сб.: Труды 6 Всесоюзного совещания по ускорителям заряженных частиц, Дубна, 1978, т. 2, Дубна, 1979; Тернов И. М., Михайлин В. В., Халилов В. Р., Синхротронное излучение и его применения, М., 1980; Калашников Н. П., Ремизович В. С., Рязанов М. И., Столкновения быстрых заряженных частиц в твердых телах, М., 1980; Бессонов Е. Г., Серов А. В., Ондуляторный группирователь пучков заряженных частиц, «ЖТФ», 1982, т. 52, в. 2.

Е. Г. Бессонов.

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):